计算机断层扫描(CT)可以对大脑异常进行三维解剖成像,如人类自发性脑出血(ICH)。通过计算机图像分析,可以对选定的感兴趣体积的病理特征进行表征。本研究以三维定量分析的方法研究脑出血的早期演变。潜在的假设是脑出血的体积和结构与死亡率和发病率有关。脑出血患者接受四次扫描:首次出现症状后3小时内,1小时后,8小时后,以及首次出现症状后20小时内。在病程中,可以观察和分析脑出血体积和结构的三维变化。脑出血的重要特征是体积、空间位置、原发区和水肿区的形状。初步研究表明脑出血容量对患者的生存有重要意义。空间中的位置必须相对于不变的三维坐标系进行测量,这样才能确定脑出血在扫描上的运动。为了实现不变性,有必要对来自两次扫描的大脑CT图像进行配准。 We have recently developed an Iterative Principal Axes Registration (IPAR) algorithm to register 3-D multi-modality brain images. We have also developed 3-D spatially weighted region growing algorithms with adaptive clustering for segmentation of ICH regions. Finally, shape features will be computed to correlate the shape evolution of the ICH to mortality and morbidity. In addition, the characteristic behavior of ICH can be correlated with the patient response to the medical treatment with the purpose of evaluating the treatment earlier during the course of the illness. It is expected that the proposed research would provide a computerized system for analysis of the ICH through the characteristic changes in ICH volume and structure during the course of the illness.